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Abstract. A method, similar to the one previously used by the author in his derivation of a 
generalized classical vinal theorem, is used to derive a generalized quantum virid equation. 
This equation is applicable to any part of a larger system of particles. Furthermore, by the 
introduction of a flux density operator, it is possible to express the quantum surface flux 
virial in two alternative forms, as easily interpreted as the classical form. As an intermediate 
result, an equation of continuity for a general one-particle observable is obtained. In an 
appendix, an equation of motion of the reduced density matrix of the first order is derived. 

1. Introduction 

The classical and quantum virial theorems, as originally derived by Clausius (1870), 
Fock (1930) and Slater (1933), are only applicable to petit ensembles (i.e. fixed number 
of particles), subject to no net external action. As a consequence, these theorems are 
not, in general, applicable to limited parts of a larger system, since such parts are mostly 
represented by grand ensembles (i.e. fluctuating number of particles). In a preceding 
paper (Schweitz 1977), the present author has derived a classical virial equation, 
applicable to grand ensembles subjected to non-zero external action. This ‘grand’ virial 
equation is of the form 

where Tis the time average of the kinetic energy contents of the observed volume a, 2, 
is the ‘petit’ virial 

2, = (1 x i .  4) 7 

i time average 

where the summation runs over all particles instantaneously contained in 0, and 2, is a 
‘surface flux virial’, caused by the exchange of particles through the (penetrable) 
surfaces of R: 

p’(x) and $(x) are the mean momentum flux densities (momentum/time and area) into 
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and out of the observed volume at the point x. Thus, the total flux density at x is 
p’(x)+p’(x). p’ and p’ are dependent on the orientation of the surface S at x. For 
p’=p ’=O,  2, vanishes and equation (1) takes the form of the Clausius ‘petit’ virial 
equation. 

Within quantum mechanics, however, one works with smeared-out probability den- 
sities rather than discrete point-particles. All N particles of a larger system may be 
considered parts of any subsystem, in the sense that all particles may have non- 
vanishing probability densities in the subsystem. Thus, the summation of equation (2) 
must be extended over all N particles of the larger system, but the corresponding 
probability densities are integrated only over the volume R of the subsystem. 
Similarly, in Zs all N particles contribute to the probability densities of the momentum 
flux densities involved. 

In the literature, some recent derivations of generalized quantum virial equations 
are found. In a series of papers, Bader et al (see Srebrenik and Bader 1974) have 
developed an interesting method of spatial partitioning of molecular systems into 
several fragments which individually satisfy one type of ‘petit’ virial relationship. In this 
method the partitioning surfaces must be chosen in a particular and well defined 
manner. This choice of surfaces, however, does not in general imply a vanishing surface 
flux virial (which would make the ‘grand’ equation become ‘petit’). The authors evade 
this difficulty by choosing the origin of their reference system in a very particular 
manner (i.e. their theorem is not invariant under transformation). Weislinger and 
Olivier (1974) have derived a generalized quantum virial equation for the special case 
of a periodic system. All authors mentioned above have derived their equations from 
the Schrodinger equation, essentially by means of Slater’s (1933) original method. 
McLellan (1974), on the other hand, has derived a virial equation from the Heisenberg 
equation. McLellan, however, introduces some limiting conditions on the wavefunction 
in the final step of his derivation, whereby his surface flux virial is reduced to a virial of 
constraint forces of a type first introduced by Slater (1933). 

In the present work, a method, similar to the one used by the author in his derivation 
of the classical ‘grand’ virial theorem (Schweitz 1977), is used to derive a generalized 
quantum virial theorem. This theorem is applicable to any part of a larger system of 
particles. Furthermore, by the introduction of a flux density operator, it is possible to 
express the quantum surface flux virial 2, in two alternative forms, as easily interpreted 
as the classical 2, of equation (3). As an intermediate result, an equation of continuity 
for a general one-particle observable is obtained. 

In the following derivations, it is tacitly implied that all wavefunctions and density 
matrices are time dependent. Furthermore, summation over the spin coordinates is 
always assumed. 

2. An equation of continuity for a one-particle observable 

The general idea in the derivation of the classical virial equation is to differentiate a sum 
of one-particle observables with respect to time, and then find the time avsrage of the 
resulting derivative. Thus we introduce a general one-particle operator Zj, acting on 
the coordinates xi of the ith particle. 2i is assumed to be time independent. The sum of 
the corresponding expectation values, taken over a limited part R of the space, then is 

M =  r=l $ 1 Cl dviJ’ m d v W i q ,  (4) 
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where the symbol I’ du indicates integration over all coordinates except the ith. In 
terms of the reduced density matrix formalism, equation (4) may be written 

the time derivative of which is 

To eliminate ay/at from equation (6), an equation of motion for y is needed. Such an 
equation is easily derived from the time-dependent Schrodinger equation, and may be 
expressed as 

A2 a 
--(Al - Ai)y(xl\xi)+N/’ dv( V- V’).s/’q = iR-y(xl\xi). at 

2m m 
(7) 

Primed operators act only on primed coordinates, V and 9 are functions of unprimed 
coordinates while V’ and 9’ are functions of one primed (xi) and remaining unprimed 
coordinates (x2, xg, , . . ). It is also possible to express the second term of equation (7) in 
terms of density functions (see appendix), whereby the following derivations could be 
carried through without the use of complete wavefunctions. For convenience, however, 
we choose to introduce density functions in this term at a later stage. Thus, equation (6) 
may be written 

dM ih N 
-=I dvl 2 1 ( A l - A ~ ) y ( x l l ~ ~ ) + , ~  dvl 1’ m dv21(V- V’)@?. 
dt 2m Ja n 

If, in the first integrand, A 1 2 1 ~  is first added and then subtracted, one obtains 

(9) 
In the second integrand, the ordinary commutator notation is used. By means of 
Green’s first identity, the first volume integral is transformed into a surface integral: 

If .& is the unit operator, equation (9) reduces to an integral form of the equation of 
continuity: 

where we have defined a flux density operator 

Note that jl acts on primed as well as unprimed coordinates. The right-hand side of 
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equation (1 1) represents (the negative of) the total flux of electrons out through the 
closed surface S. Equation (9) may now be written 

This is, in fact, an equation of continuity of the observable corresponding to 2,. When 
operating on &y, the operator .fl yields the probability density of the flux density (flux 
per unit area) of the observable. 

3. The generalized Virial equation 

To derive the virial equation from equation (13), .& is defined as the scalar product of 
the position vector and the linear momentum operator B1: 

g1 = x1 . pl = -ihxl . v1. 

2 - 2(x1 .pl +pl . xl) 2l -& (15) 

(14) 

This is a non-Hermitian operator; strictly we should use the operator 

but this operator yields the same final result as &. (The constant operator-gift, 
inserted into equation (13), leads to the equation of continuity (1 l), the time average of 
which vanishes.) The commutator in equation (13) now is 

(16) [gl, Ally = -ih[xl . Vl,  Ally = 2ihAl y. 

.21(~-  v’)WP= -ihxl. v ~ ( v -  v’)P* 
The last integrand of equation (13) is 

= -ihP(*xl. v1 V+ Vxl . vl*- v’xl. vl*). (17) 

When the primes are dropped prior to the integration, the two last terms of equation 
(17) are eliminated. Thus equation (13) can be written -=-i d M  dSl.(,flx1.ily)-2/n d ~ ~ ~ A ~ y - N [ ~ d v ~ / ~  h2 d v w x l . V I V .  (18) 
dt 

The second term is recognized as twice the expectation value ( T )  of the kinetic energy, 
while the last term is the expectation value Zp = -2, (x, . V,V) of the petit virial. The 
first term is the quantum surface flux virial 

Zs=-f S dS. (,fx.~y(xIx’)). (19) 

For convenience, we have dropped the index 1. 
The time average of equation (18) obtains the form of a grand virial equation: 

(2(T)  + ZP + &)time average = 0, (20) 
since the time average of dM/dt must vanish if M is uniformly continuous and limited 
for all values of t. In the appendix, the petit virial Zp is expressed in terms of density 
functions. 
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4. An alternative form of the surface flux virial 

Note that the integrand of equation (19) describes the flux of a vinal rather than the 
uinal o f a  flux as in the classical Z,  of equation (3). If equation (19) is to be expressed 
analogously to the classical case, j must act on By rather than on x . @y. It is easily 
verified that 

ih 
2m 

j ( x .  $ ) y  = x .  (&)y --$y, 

where the dot product on the right-hand side now represents matrix multiplication, and 

is a momentum flux tensor. Substitution of equation ( 2 1 )  into equation (19) yields 

The first integral is here expressed as a virial of a momentum flux (analogously to the 
classical case). The appearance of the last term is a consequence of the use of 
smeared-out wavefunctions, and lacks an analogy in the classical point-particle case. 
The last integral is proportional to the (transverse) momentum density, integrated all 
over the surface S. This integral will vanish unless the particles are accelerated through 
the observed volume R by an external field. 
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Appendix. Equation of motion of the reduced density matrix of the first order 

In the following derivation it is of crucial importance to observe the difference between 
two types of ‘fragmental’ or ‘regional’ average values: 

and 

As pointed out by Srebrenik and Bader (1974), all electrons are treated in an equivalent 
manner in the first type of average (M), while this is not the case in the second type (R) .  
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M may be expressed as 

M =  J dvl .21y(1)(~ 11’). 

The relationship between M and R is then given by 
n 

(44.3) 

(The definition of Y ( ~ )  includes the factor (r).) Since the volume CR may be arbitrarily 
chosen, we may neglect the integration In dvl in equation (A.4), and we obtain 

Analogously, for symmetric two-electron operators &j, we obtain 

1 1: du PE’ gi,9 = la du2 212y‘2’(1, 211’, 2’) 
i J  

3 
+E la du2 dv3 &3y(3)(1, 2, 311’, 2’, 3’) (A. 6 )  

where*’=q(l’, 2,3, , . . , N ) .  Equations (A. 5) and (A.6) give the type of averages that 
appear in the derivation of the equation of motion of y‘” from the time dependent 
Schrodinger equation: 

(A.7) 
a 9  
at 

H q  = ih--. 

The complex conjugate of (A.7) may be expressed as 

( A 8  
A -  aW H”qP = -%-- 

at 

where .Tr”=q(l’, 2’, 3, . . . , N). Analogously, the two first coordinates of I? are 
primed. If (A.7) is multiplied by @“ and (A.8) by -q, and the results are summed up, 
one obtains 

(A.9) 
a -  
at 

@& - q@v = ih- ( ~ q ) .  

The Hamiltonian operator is 

(A.lO) 

?here K = h2/2m and h and g are one- andJwo-electron potentials, respectively. Insert 
H (and the analogous expression for H”) into equation (A.9) and perform the 
integration 

It’ 1: du =Im du2 1: dv =Im du, dv3 1- dv. 

Utilizing equations (AS) and (A.6) and the fact that 

p ( l ’ ,  2‘, . . . , k’ll, 2 , .  . . , k)  = y y 1 , 2 , .  . . , kll’, 2 ’ .  . . , k’ ) ,  
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one obtains 
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2K 
d~2(A2-A;)~(~)(1,  2[1’, 2’) K --(A’ - ~;)p( 1 11’) -- 

N NI, 
1 2 +E ( h  (1) - h (l’))y(’)( 11 1 ’) + 1 du2(h (2) - h ( 2 ’ ) ) ~ ‘ ~ ’ (  1,21 l’, 2’) 

W 

ifi a 
N at 

=- - - p ( l [ l ’ ) .  (A. 11) 

The first integral in equation (A. 11)  can be transformed into a surface integral by means 
of Green’s first identity: 

(A.12) 

which reduces to zero for a system with vanishing ‘4’ and derivates of ‘4’ at infinity. The 
second and the last integrals of equation (A.11) vanish when the primes on coordinates 
2 and 3 are dropped prior to the integration. Thus, equation (A.11) is reduced to 

- K ( A ~  - Ai)y‘’)( 11 1’) + (h (I) - h(  l’))y(’)(l[ 1’) 

(A. 13) 

which is an equation of motion of y“’. The somewhat simpler equation of motion used in 
the article (equation (7) ) ,  is easily derived in an analogous manner. 

In the virial equation (18) of § 3, the petit virial 2, may be expressed in terms of 
density matrices as follows: 

Z p =  -N  dul du W”€’l. VI V I,, II 
= -h dul(xl. Vlh(l))y(’)(l l l)  -1 dul I du2(x1. Vlg(l, 2))y(2)(1,2(1, 2). (A.14) 

n m 
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